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Partial amplitude death in coupled chaotic oscillators
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We have investigated the dynamics of the coupled Lorenz oscillators numerically and theoretically. We find
the partial amplitude death when the interaction is strong enough. The linear stability analysis of the partial

amplitude death is proposed.
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I. INTRODUCTION

Coupled oscillators are frequently encountered in electri-
cal engineering, computational biology, and physics [1]. The
applications are found in coupled laser systems, Josephson
junctions arrays, electrical circuits, etc. [2—-4]. Since the
Pecora’s work in 1990 [5], the coupled chaotic oscillators
have been a hot spot. Lots of phenomena related to the syn-
chronous chaos have been found in coupled chaotic systems,
for example phase synchronization, partial synchronization,
riddled basin, kinds of bifurcations of the synchronous
chaos, and so on [6-10]. However there are some coupled
systems which cannot realize chaos synchronization even
when the interaction among the elements are strong enough
[9]. Tt is interesting to see whether such systems may still
display rich dynamic behaviors. In this paper, we will inves-
tigate such a coupled system where the chaos synchroniza-
tion is impossible.

The model used in this paper is a coupled Lorenz oscilla-
tors. The isolated system in dimensionless form is described
as

x=o(y-x), y=rx—y-10xz, 7=2.5xy—-bz, (1)
which is used to describe an analog circuit reported in Ref.
[11] where dimensionless parameters o=10.19, b=2.664,
and r=28.17. When variable y is coupled to the equation of
z, the chaos synchronization is impossible no matter how
strong the interaction is [12]. We first explore the dynamics
of the coupled system with two identical Lorenz oscillators
numerically. We find that the translational symmetry in the
system is broken if the interaction becomes strong enough
where one element oscillates with large amplitude and the
other with small amplitude. Further increasing the strength of
the interaction, we find that the small amplitude oscillation
collapses to a partial amplitude death state where part of the
variables of one oscillator stays at rest. Then we propose a
linear stability analysis for the partial amplitude death state.

The paper is organized as following. In Sec. II, we present
the numerical results. In Sec. III, we give a linear stability
theory for the partial amplitude death. Finally, a brief sum-
mary is made in Sec. IV.
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II. NUMERICAL RESULTS

The coupled system can be described by the following
equation:

Xp=0(y;—x)), yy=rx =y —10xz,

21=2.5xy, = bz + ey, —y), Xr=0(y2-x), (2)

Yo=rXy =y = 1062, 2 =2.5x3y, — b2y + €(y; — y2).

The coupled system has translational symmetry between the
oscillators 1 and 2. However the reflection symmetry under
the transformation x ——x, y——y, and z—z in a single Lo-
renz system is broken. The fourth-order Runge-Kutta algo-
rithm is used to integrate Eq. (2) with time step of 0.01.

The dynamics of the coupled oscillators is controlled by
the coupling constant €. The phase portraits projected in the
x-z plane for different € are shown in Fig. 1. Once the cou-
pling between the oscillators is switched on, the reflection
symmetry in any single Lorenz oscillator is broken. With the
increase of €, one wing of the attractor expands [for example,
Figs. 1(a) and 1(b)]. However the translational symmetry be-
tween the two oscillators are still kept. Further increasing the
coupling constant beyond a critical coupling constant, the
two wings structure of the attractor disappears: only the ex-
panding one survives. The translational symmetry is broken
either and two oscillators stay at different attractors. The pro-
cess of the transition can be found in Figs. 1(c) and 1(d).
When the coupling constant is strong enough, an interesting
state is found where one of the attractors shrinks to a line
parallel to the z axis in Fig. 1(e). It means that x, becomes
independent of time while z, not.

To gain more knowledge about the behaviors described in
Fig. 1, we record the time sequence of x. Before the transla-
tional symmetry is broken, the two oscillators jump between
two wings of the attractor while not in synchronization [Figs.
2(a) and 2(b)]. A finding not reflected in Fig. 1 is that the two
oscillators with the same attractor behave quite differently
for certain range of € where one will oscillate with large
amplitude if the other oscillates with small amplitude, which
is shown in Fig. 2(c). Each oscillator jumps intermittently
between the oscillations with the small and large amplitude.
With the increase of the coupling constant, the jump between
the two kinds of oscillations becomes less frequent and even-
tually one oscillator stays on the large amplitude oscillation
while the other on the small one [for example in Fig. 2(d)].
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The disappearance of the intermittency signals the broken
translational symmetry in the solutions of Eq. (2). The tem-
poral behavior of the trajectory in Fig. 1(e) is shown in Fig.
2(e) where the small oscillation of variable x, dies off while
x; continues the oscillation with large amplitude. It is worth
noting that the oscillator 2 only stay at rest for the variables
X, and y, while the variable z, still oscillates with the ampli-
tude comparable to the oscillator 1 and the value of z, in-
creases with € (not shown here). In contrast to the amplitude
death found in coupled limit cycles [13,14] where the ampli-
tude death indicates that all elements stay at quenched state,
we term the phenomenon of the amplitude death in some
dynamical variables as a new type of partial amplitude
death. A different partial amplitude death has been men-
tioned in Ref. [14], which refers to a phenomenon where
some of the elements die off while the rest keeps oscillating.
Especially, the requirement of the nonidentical elements or
the delayed interaction among elements for the amplitude
death (or the partial amplitude death) in Refs. [13,14] is not
required in this paper. One thing to be noted is that the partial

amplitude death with x,=y,=0 has a partner with x;=y;=0
according to the translational symmetry of Eq. (2). Depend-
ing on the initial condition, the system will evolve into one
of them.

Moreover, the bifurcation diagram versus coupling con-
stant € for each oscillator is presented in Fig. 3 where the
partial amplitude death in the variable x, when €>6.04 is
clear. The inset in Fig. 3(b) shows the amplitude of the small
oscillation grows gradually after the partial amplitude death
becomes unstable. The spectrum of the Lyapunov exponents
shown in Fig. 3(c) confirms the transitions found in Figs.
3(a) and 3(b). The blowup of the spectrum in the range of
€€ (6,6.05) shows that the second largest Lyapunov expo-
nent collides with zero at e=6.04 and keeps negative on both
sides of the transition, which indicates that the instability of
the partial amplitude death is related to the period-doubling
bifurcation.

The discontinuity in the size of the attractor versus € in
Fig. 3 at e=~6.01 indicates a crisis-induced-transition [15]
which is responsible for the change of the translational sym-
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FIG. 2. The time evolutions of the variable x are recorded for different € from (a) to (e). (f) The time evolution of the variable z with the
same € as (e). Top panels are for the oscillator 1 and the bottom for the oscillator 2.
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FIG. 3. (Color online) (a) and (b) The bifurcation diagrams versus € for x; and x,, respectively. The data is obtained when x; reaches its
maximum. (c) The first three largest Lyapunov exponents, A, are plotted versus e. The insets in (a), (b), and (c) enlarge the narrow parameter
region for € € (6,6.05) where the partial amplitude death loses its stability.

metry of solutions in the studied system. The crisis here is a
result of the collision between the orbit of the large ampli-
tude oscillation and the stable manifold of the origin (x;=y;
=z,=0, i=1,2) which prevents the movement of the oscillator
from one wing to the other of the Lorenz attractor for e
>6.01. Except for the abrupt change in the size of the attrac-
tor, the crisis induces intermittency also which can be hinted
in Figs. 4(a) and 4(b). Strictly, the demonstration of the crisis
requires the location of the stable manifold of the origin,
however it is difficult to do in a high dimensional phase
space. Nevertheless Figs. 4(c) and 4(d) can give us an indi-
rect proof on such collision. The data in Figs. 4(c) and 4(d) is
obtained from Figs. 4(a) and 4(b) where one exchange be-
tween the states of two oscillators occurs. Figure 4(d) shows
that the confinement to one wing by the stable manifold of
the origin has been broken and the oscillator with large am-
plitude jumps to another wing and stay for a while before
exiting to the small amplitude oscillation.

III. THEORETICAL ANALYSIS

At the first glance, the partial amplitude death seems am-
biguous since x, and y, do not constitute a closed system
while the variable z, is time-dependent. However in the sub-
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FIG. 4. €=5.95 is close to the crisis-induced transition. (a) and
(b) The evolutions of x(1) and x(2) where the intermittency is clear.
(c) A time period of the evolution of x(1) and x, is shown where
one exchange between the states of the oscillators occurs. (d) The
trajectory of x, in x-z plane during the time period in (c) where we
can find that the large amplitude oscillation jumps to another wing
of the Lorenz attractor.

system of x, and y,, the variable z, appeared in the y, equa-
tion is multiplied by x,. Therefore, if x, goes to zero, z, may
not have any effects on the behavior of the subsystem. To
explain the partial amplitude death, it is necessary to explore
its stability. Let us consider the equations of x, and y, and
treat them as a subsystem driven by the signal z,,

Xy=0(ya—X), Ya=71x—y,— 10x,25. (3)

The subsystem has unique equilibrium (0,0) which repre-
sents the partial amplitude death state. The Jacobian matrix
at the equilibrium is A=( ¢ _"1) and has two eigenvalues
N1 2=[Tr(A)£\Tr(A)*—4 Det(A)]/2 where Tr(A)=—(c+1),
Det(A)=0(1-r+10z,). With ¢=10.19, b=2.664, and r
=28.17, we have Tr(A)=-11.19<0 and Det(A)=0(10z,
—27.17). The equilibrium is stable only if z,>(1-r)/10.
Since z, is dependent of time, the instantaneous stability of
the equilibrium changes with time. We plot the instantaneous
maximum growth rate, A=max{Re(\;),Re(\,)}
[min{Re(\;),Re(\,)} is always negative], in Fig. 5(a). Three
types of the equilibria can be found: the saddle with positive
maximum growth rate, the stable node with negative maxi-
mum growth rate, and the stable focus with constant growth
rate. The virtual stability of the equilibrium (0,0) is deter-
mined by the accumulated growth rate during the evolution.
In other words, the equilibrium is stable if and only if the
area enclosed by the time axis [the dashed line in Fig. 5(a)]
and the curve of the maximum growth rate is negative. Such
a accumulated growth rate can be quantified by the
Lyapunov exponents of the subsystem Eq. (3). The driving
signal z, in Eq. (3) is obtained by simulating numerically the
equations

K=oy —x), yi=rx =y —10xyy,

21 =2.5x1y, bz —€yy, Z=-bz+ €y. 4)

The Lyapunov exponents of the subsystem (x,,y,) are shown
in Fig. 5(b). The negative maximum Lyapunov exponent in-
dicates that the partial amplitude death is stable. The onset of
the partial amplitude death is in agreement with the direct
numerical simulation of the original system.

Since the instability of the partial amplitude death roots at
the appearance of the instantaneous saddle, the small ampli-
tude oscillation after the instability is not caused by Hopf
bifurcation but a consequence of period-doubling bifurcation
as mentioned in the last section. Immediately after the insta-
bility of the partial amplitude death, the continuous growing
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FIG. 5. (a) The time series of the instantaneous maximum
growth rate A (bold curve) and z,. €=6.05. (b) The Lyapunov ex-
ponents versus € are plotted for the subsystem of x, and y,. The
onset of the instability of the partial amplitude death is a little larger
than €=6.

of the amplitude from zero with the decrease of the coupling
constant keeps the translational symmetry of the system bro-
ken. The translational symmetry is restored by the crisis
which leads to the jump of the oscillators between the oscil-
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FIG. 6. The phase diagram for the partial amplitude death. (a)
0=10.19 and b=2.664. (b) r=28.17 and b=2.664.

lations with large and small amplitude as mentioned in the
last section.

The partial amplitude death is robust with the change of
the system’s parameters. In Fig. 6, we show the phase dia-
gram where the partial amplitude death is stable above the
curve. The reason that the partial amplitude death tends to be
stable for large € is that strong coupling constant usually
increases the value of z, while we know that large z, favors
the partial amplitude death based on the analysis above.

IV. CONCLUSION

In summary, we have investigated the dynamics of the
coupled Lorenz oscillators numerically and theoretically. We
find that the translational symmetry is broken when the in-
teraction between the oscillators becomes strong. We also
find the partial amplitude death when the interaction is strong
enough. The linear stability analysis is presented to explain
the existence of the partial amplitude death.
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